Chapter 9 Mid-Chapter Test

SCORE _

(Lessons 9-1 through 9-3)

Part I Write the letter for the correct answer in the blank at the right of each question.

- 1. Find the domain and range of the function shown.
 - **A.** D = $\{x \mid x > 0\}$, R = $\{y \mid y \text{ is any real number.}\}$
 - **B.** D = $\{x \mid x \text{ is any real number.}\}, R = \{y \mid y < 0\}$
 - **C.** D = $\{x \mid x \text{ is any real number.}\}\$, R = $\{y \mid y > 0\}$
 - **D.** D = $\{x \mid x > 0\}$, R = $\{y \mid y > 0\}$

- **2.** Simplify the expression $y^{5\sqrt{7}} \div y^{\sqrt{7}}$.
 - **F.** y^{35}
- $\mathbf{G}. \ \mathbf{y}^5$
- **H.** $y^{6\sqrt{7}}$
- **J.** $v^{4\sqrt{7}}$

- **3.** Write the equation $4^{-3} = \frac{1}{64}$ in logarithmic form.
 - **A.** $\log_{-3} 4 = \frac{1}{64}$

C. $\log_{\frac{1}{64}}(-3) = 4$

B. $\log_4 \frac{1}{64} = -3$

D. $\log_4(-3) = \frac{1}{64}$

3. ____

- 4. Evaluate $\log_4 32$.
 - **F.** $\frac{5}{2}$
- **G.** 8
- **H.** 3
- J. $\frac{2}{\pi}$

- **5.** Solve $\log_3 (7x 3) \ge \log_3 (5x)$.
 - **A.** $x \ge \frac{3}{2}$ **B.** $x > \frac{3}{7}$

- **C.** $x \ge 0$ **D.** $x \ge \frac{2}{3}$
- 6. Use $\log_3 5 = a$ and $\log_3 7 = b$ to write $\log_3 \frac{21}{5}$ in terms of a and b. F. $\frac{3b}{a}$ G. a-b+1 H. b-a J. 1+b-a 6.

Part II

- 7. Write an exponential function whose graph passes through the points (0, -3) and (4, -48).

For Questions 8-11, solve each equation.

8. $\log_{\frac{1}{2}} m = -2$

9. $\log_7(x+3) - \log_7(x-3) = 1$

10. $\log_3 (y - 8) + \log_3 (y + 4) = \log_3 13$

- 11. Use $\log_2 3 = x$ and $\log_2 7 = y$ to write the expression $\log_2 84$ in terms of x and y.

9

Chapter 9 Quiz 1 (Lessons 9–1 and 9–2)

SCORE ____

1. Sketch the graph of $y = 3\left(\frac{1}{2}\right)^x$. Then state the function's domain and range.

- **2.** Write an exponential function whose graph passes through the points (0, -5) and (-2, -20). Then determine whether the function represents exponential *growth* or *decay*.

3. Simplify $3^{\sqrt{5}} \cdot 3^{2\sqrt{5}}$.

4. Solve $\left(\frac{1}{3}\right)^m = 27^{m+2}$.

4

5. Solve $25^{4t+1} \ge 125^{2t}$.

- 5. _____
- **6.** Write the equation $81^{\frac{1}{2}} = 9$ in logarithmic form.
- 6. _____
- 7. Write the equation $\log_{216} 36 = \frac{2}{3}$ in exponential form.
- 7. _____

8. Evaluate $\log_{16} 64$.

8. _____

9. Solve $\log_{16} n = -\frac{1}{2}$.

9.

10. Solve $\log_5 (4x - 1) \ge \log_5 (x + 2)$.

10.

NAME

______ DATE______ PERIOD ___

9

Chapter 9 Quiz 2

SCORE _____

(Lesson 9–3)

Use log_2 = X and log_3 = y to write each expression in terms of x and y.

1. $\log_5 \frac{10}{3}$

2. log₅ 24

1.

2.

Solve each equation.

3.
$$\log_7 36 - \log_7 (2x) = \log_7 4$$

4.
$$\log_3 x = \frac{1}{2} \log_3 25 - 5 \log_3 2$$

5.
$$\log_2(x+1) + \log_2(x-5) = 4$$

Use a calculator to evaluate each expression to four decimal places.

1. log 1.5

2. ln 4.1

For Questions 3-7, solve each equation or inequality. Round to four decimal places.

3. $4^{2m} = 130$

4. $5^{x+4} = 2^{3x}$

5. $7^{t-5} < 21.5$

6. $\ln(x+5)=3$

- 7. $4 + 2e^{5x} \ge 28$
- 8. Express $\log_3 25$ in terms of common logarithms. Then approximate its value to four decimal places.
- **9.** Write an equivalent logarithmic equation for $e^3 = 2x$.
- 10. Evaluate $e^{\ln 0.3}$.

- 1.
- 2. _____
- 3. _____
- 4. _____
- 5.
- 6. _____
- 9.
- 10. _____

Chapter 9 Quiz 4

(Lesson 9-6)

______ DATE______ PERIOD _____

2. ___

SCORE ____

- **1.** A substance decays according to the equation $y = ae^{-0.0025t}$, where t is in minutes. Find the half-life of the substance. Round to the nearest tenth.
- **2.** A-1 Electric has a piece of machinery valued at \$55,000. It depreciates at a rate of 12.5% per year. After how many years will the value have depreciated to \$38,000? Round to the nearest tenth.
- **3. MULTIPLE CHOICE** In 1925, the population of a city was 90,000. Since then, the population has increased by 2.1% per year. If it continues to grow at this rate, what will the population be in 2020?
 - **A.** 4,073,333
- **B.** 136,382
- **C.** 648,169
- **D.** 6.6×10^{12}

- 3.
- 4. The Morgans bought a house worth \$125,000. Assuming that the house will appreciate 8% per year, what will the house be worth in eight years? Round to the nearest dollar.
- **5.** A type of bacteria doubles in number every 25 minutes. Find the constant k for this type of bacteria, then write the equation for modeling this exponential growth.
- 5.

Chapter 9 Assessment Answer Key

$egin{array}{ll} \mathbf{Quiz} \ \mathbf{1} \ \text{(Lessons 9-1 and 9-2)} \\ \mathbf{Page} \ \mathbf{51} \end{array}$

D = $\{x \mid x \text{ is any real number.}\}$, R = $\{y \mid y > 0\}$

$$y = 5\left(\frac{1}{2}\right)^x$$
; decay

3.
$$\frac{3^{3\sqrt{5}}}{-\frac{3}{2}}$$

5.
$$t \ge -1$$

 $\log_{81} 9 = \frac{1}{2}$

6.
$$\frac{1991}{2}$$
7.
$$216^{\frac{2}{3}} = 36$$

8.
$$\frac{\frac{3}{2}}{\frac{1}{4}}$$
9. $\frac{\frac{3}{2}}{\frac{1}{4}}$

10.
$$x \ge 1$$

Quiz 2 (Lesson 9–3) Page 51

4.
$$\frac{3}{32}$$

Quiz 3 (Lessons 9–4 and 9–5) Page 52

$$5. \quad \{t \mid t < 6.5767\}$$

13.6972

7.
$$\{x \mid x \ge 0.4970\}$$

$$8. \frac{\log 25}{\log 3} \approx 2.9299$$

9.
$$3 = \ln 2x$$

Quiz 4 (Lesson 9–6) **Page 52**

$$k \approx 0.0277;$$

5. $y = ae^{0.0277t}$

Mid-Chapter Test Page 53

7.
$$y = -3(2^x)$$

11.
$$x+y+2$$